
1 INTRODUCTION 

The results presented in this paper are part of the 
outcome of a joint research and development pro-
ject, where the main goal is the development of 
earthquake-proof deep foundations consisting of mi-
cro-pile groups especially with respect to the mitiga-
tion of liquefaction. Furthermore the behavior of this 
deep foundation system with respect to ductility dur-
ing earthquake like excitation should be observed. 

For this purpose, full-scale field tests were con-
ducted which are described in short in the following 
Section 2. 

These tests have been accompanied by numerical 
analyses based on a hypoplastic constitutive model 
(e.g. von Wolffersdorff 1996, Niemunis & Herle 
1997). This model has been successfully applied for 
earthquake application, e.g. in the framework of the 
special research filed SFB 461: “strong earthquakes” 
of the German Research Foundation (cf. e.g. Buehler 
2006, Cudmani et al. 2004, Gudehus et at. 2004) 

For the calibration of the material parameters of 
the constitutive model a laboratory program was 
conducted. The results together with the calibration 
results (back analyses of the relevant element tests) 
are presented in Section 3. 

In Section 4 numerical results of cyclic element 
test simulations (simple shear, triaxial shearing) un-
der drained and undrained conditions are presented 

to demonstrate the capacity of the applied constitu-
tive equation. 

In Section 5 a summary and outlook is given. 

2 FIELD TESTS 

2.1 Subsoil conditions 

The subsoil at the test site (dump of the pit mine 
Jaenschwalde in Germany) consisted of fly ash of a 
nearby power plant with a hard consistency. For the 
installation and subsequent testing of the micro-pile  
foundations a trial pit 7 m x 17 m wide and 4 m deep 
was excavated and backfilled with dry slightly grav-
elly quartz sand (coefficient of uniformity U = 2.7, 
coefficient of curvature Cc = 1.2, fine content 2.2%). 

After the installation of the test and support foun-
dations CPT soundings were performed to assess the 
initial conditions of the backfill in terms of density. 

2.2 Test setup and conditions 

Two groups of inclined micro-pile foundations with 
a pile cap (3 piles with an inclination of 15° and 
concrete block 1 m x 1 m x 1 m each) were installed 
together with two support foundations (4 piles, pile 
cap 1,5 m x 1,5 m x 1,0 m). 

The two test foundations were different with re-
spect to the installation pressure of the injected ma-
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